Solution :
$$A = \left\{ {\left( {a,\,b} \right) \in R \times R:\left| {a - 5} \right| < 1,{\text{ }}\left| {b - 5} \right| < 1} \right\}$$
Let $$a-5=x, \,\,b-5=y$$
Set $$A$$ contains all points inside $$\left| x \right| < 1,\,\left| y \right| < 1$$
$$B = \left\{ {\left( {a,\,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \leqslant 36} \right\}$$
Set $$B$$ contains all points inside or on
$$\frac{{{{\left( {x - 1} \right)}^2}}}{9} + \frac{{{y^2}}}{4} = 1$$

$$\therefore \left( { \pm 1,\, \pm 1} \right)$$ lies inside the ellipse.
Hence, $$A \subset B$$