Question

Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity $$\overrightarrow u $$ and the other from rest with uniform acceleration $$\overrightarrow f .$$ Let $$\alpha $$ be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time :

A. $$\frac{{u\,\cos \,\alpha }}{f}$$  
B. $$\frac{{u\,\sin \,\alpha }}{f}$$
C. $$\frac{{f\,\cos \,\alpha }}{u}$$
D. $${u\,\sin \,\alpha }$$
Answer :   $$\frac{{u\,\cos \,\alpha }}{f}$$
Solution :
We can consider the two velocities as $$\overrightarrow {{v_1}} = u\hat i{\text{ and }}\overrightarrow {{v_2}} = \left( {ft\,\cos \,\alpha } \right)\hat i + \left( {ft\,\sin \,\alpha } \right)\hat j$$
3D Geometry and Vectors mcq solution image
$$\therefore $$  Relative velocity of second with respect to first
$$\eqalign{ & \overrightarrow v = \overrightarrow {{v_2}} - \overrightarrow {{v_1}} = \left( {ft\,\cos \,\alpha - u} \right)\hat i + \left( {ft\,\sin \,\alpha } \right)\hat j \cr & \Rightarrow {\left| {\overrightarrow v } \right|^2} = {\left( {ft\,\cos \,\alpha - u} \right)^2} + {\left( {ft\,\sin \,\alpha } \right)^2} \cr & \Rightarrow {\left| {\overrightarrow v } \right|^2} = {f^2}{t^2} + {u^2} - 2uft\,\cos \,\alpha \cr} $$
For $$\left| {\overrightarrow v } \right|$$ to be min we should have
$$\eqalign{ & \frac{{d{{\left| v \right|}^2}}}{{dt}} = 0 \cr & \Rightarrow 2{f^2}t - 2uf\,\cos \,\alpha = 0 \cr & \Rightarrow t = \frac{{u\,\cos \,\alpha }}{f} \cr} $$
Also, $$\frac{{{d^2}{{\left| v \right|}^2}}}{{d{t^2}}} = 2{f^2} = + ve$$
$$\therefore \,{\left| v \right|^2}$$  and hence $$\left| v \right|$$ is least at the time $$\frac{{u\,\cos \,\alpha }}{f}$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section