Total number of positive integral value $$'n'$$ so that the equations $${\cos ^{ - 1}}x + {\left( {{{\sin }^{ - 1}}y} \right)^2} = \frac{{n{\pi ^2}}}{4}\,$$ and $${\left( {{{\sin }^{ - 1}}y} \right)^2} - {\cos ^{ - 1}}x = \frac{{{\pi ^2}}}{{16}}\,$$ are consistent, is equal to
If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$ is