Question

The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \frac{{{x^2}}}{4}\log \left( {1 + 3x} \right)}}$$     is :

A. $$\frac{4}{3}{\left( {{{\log }_e}4} \right)^2}$$
B. $$\frac{4}{3}{\left( {{{\log }_e}4} \right)^3}$$  
C. $$\frac{3}{2}{\left( {{{\log }_e}4} \right)^2}$$
D. $$\frac{3}{2}{\left( {{{\log }_e}4} \right)^3}$$
Answer :   $$\frac{4}{3}{\left( {{{\log }_e}4} \right)^3}$$
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {{4^x} - 1} \right)}^3}}}{{\sin \frac{{{x^2}}}{4}\log \left( {1 + 3x} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {{4^x} - 1} \right)}^3}}}{{{x^3}}}.\frac{{{{\left( {\frac{x}{2}} \right)}^2}}}{{\sin \frac{{{x^2}}}{4}}}.\frac{{3x}}{{\log \left( {1 + 3x} \right)}}.\frac{4}{3} \cr & = \frac{4}{3}{\left( {{{\log }_e}4} \right)^3}.1.{\log _e}\left( e \right) \cr & = \frac{4}{3}{\left( {{{\log }_e}4} \right)^3} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section