Question

The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{{{27}^x} - {9^x} - {3^x} + 1}}{{\sqrt 2 - \sqrt {1 + \cos \,x} }}$$     is :

A. $$4\sqrt 2 {\left( {\log \,3} \right)^2}$$
B. $$8\sqrt 2 {\left( {\log \,3} \right)^2}$$  
C. $$2\sqrt 2 {\left( {\log \,3} \right)^2}$$
D. none of these
Answer :   $$8\sqrt 2 {\left( {\log \,3} \right)^2}$$
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{{27}^x} - {9^x} - {3^x} + 1}}{{\sqrt 2 - \sqrt {1 + \cos \,x} }} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{9^x}{{.3}^x} - {9^x} - {3^x} + 1}}{{\sqrt 2 - \sqrt 2 \,\cos \frac{x}{2}}} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{{9^x} - 1}}{x}} \right).\left( {\frac{{{3^x} - 1}}{x}} \right).\frac{1}{{\sqrt 2 }}.{x^2}.\frac{1}{{2\,{{\sin }^2}\frac{x}{4}}} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{{9^x} - 1}}{x}} \right).\left( {\frac{{{3^x} - 1}}{x}} \right).\frac{1}{{\sqrt 2 }}\left( {\frac{{\frac{{{x^2}}}{{16}}}}{{{{\sin }^2}\frac{x}{4}}}} \right)8 \cr & = \frac{8}{{\sqrt 2 }}\left( {\log \,9} \right)\left( {\log \,3} \right) \cr & = 8\sqrt 2 {\left( {\log \,3} \right)^2} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section