Question

The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{\left( {\sin \,x} \right)}^{\frac{1}{x}}} + {{\left( {1 + x} \right)}^{\sin \,x}}} \right),$$       where $$x>0$$  is :

A. $$0$$
B. $$-1$$
C. $$1$$  
D. $$2$$
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{Given, }}\mathop {\lim }\limits_{x \to 0} \left( {{{\left( {\sin } \right)}^{\frac{1}{x}}} + {{\left( {1 + x} \right)}^{\sin \,x}}} \right) \cr & = \mathop {\lim }\limits_{x \to 0} {\left( {\sin \,x} \right)^{\frac{1}{x}}} + \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\sin \,x}} \cr & = {\left( {\sin \,0} \right)^{\frac{1}{0}}} + \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\sin \,x}} \cr & = {\left( 0 \right)^\infty } + \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\sin \,x}} \cr & = 0 + {e^{\mathop {\lim }\limits_{x \to 0} \left[ {\log {{\left( {1 + x} \right)}^{\sin \,x}}} \right]}}\,\,\,\,\,\,\,\left( {\because \,{e^{\log \,x}} = a} \right) \cr & = {e^{\mathop {\lim }\limits_{x \to 0} \left[ {\sin \,x\,\log \left( {1 + x} \right)} \right]}} \cr & = {e^{\mathop {\lim }\limits_{x \to 0} \sin \,x \times \mathop {\lim }\limits_{x \to 0} \log \left( {1 + x} \right)}} \cr & = {e^{\sin \left( 0 \right) \times \log \left( {1 + 0} \right)}} \cr & = {e^{0 \times \log \left( 1 \right)}} \cr & = {e^{0 \times 0}} \cr & = {e^0} \cr & = 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section