Question

The value of $$\mathop {\lim }\limits_{x \to 0} \frac{1}{{{x^3}}}\int\limits_0^x {\frac{{t\,ln\left( {1 + t} \right)}}{{{t^4} + 4}}dt} $$     is-

A. $$0$$
B. $$\frac{1}{{12}}$$  
C. $$\frac{1}{{24}}$$
D. $$\frac{1}{{64}}$$
Answer :   $$\frac{1}{{12}}$$
Solution :
$$\mathop {\lim }\limits_{x \to 0} \frac{1}{{{x^3}}}\int_0^x {\frac{{t\,ln\left( {1 + t} \right)}}{{{t^4} + 4}}dt\,\,\,\,\,\left[ {\frac{0}{0}{\text{form}}} \right]} $$
Applying L’ Hospital’s rule, we get
$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{xln\left( {1 + x} \right)}}{{{x^4} + 4}}}}{{3{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{ln\left( {1 + x} \right)}}{x}.\frac{1}{{3\left( {{x^4} + 4} \right)}} \cr & = 1.\frac{1}{{12}} \cr & = \frac{1}{{12}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section