Question

The value of the integral $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {{x^2} + ln\frac{{\pi + x}}{{\pi - x}}} \right)} \cos x\,dx$$      is-

A. $$0$$
B. $$\frac{{{\pi ^2}}}{2} - 4$$  
C. $$\frac{{{\pi ^2}}}{2} + 4$$
D. $$\frac{{{\pi ^2}}}{2}$$
Answer :   $$\frac{{{\pi ^2}}}{2} - 4$$
Solution :
$$\eqalign{ & \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {{x^2} + ln\left( {\frac{{\pi + x}}{{\pi - x}}} \right)} \right]} \cos x\,dx \cr & = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {{x^2}} \cos x\,dx + \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {ln\left( {\frac{{\pi + x}}{{\pi - x}}} \right)} \cos x\,dx \cr & = 2\int\limits_0^{\frac{\pi }{2}} {{x^2}} \cos \,x\,dx + 0 \cr} $$
[as $${{x^{2\,}}\,\cos \,x}$$    is an even function and $$ln\left( {\frac{{\pi + x}}{{\pi - x}}} \right)\,\cos \,x$$     is an odd function]
$$\eqalign{ & = 2\left[ {{x^2}\sin \,x + 2x\,\cos \,x - 2\,\sin x} \right]_0^{\frac{\pi }{2}} \cr & = 2\left( {\frac{{{\pi ^2}}}{4} - 2} \right) \cr & = \frac{{{\pi ^2}}}{2} - 4 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section