Question

The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {\frac{{{{\log }_e}x}}{x}} \right|dx} ,$$   is:

A. $$\frac{3}{2}$$
B. $$\frac{5}{2}$$  
C. $$3$$
D. $$5$$
Answer :   $$\frac{5}{2}$$
Solution :
$${\text{Let }}I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\frac{{{{\log }_e}x}}{x}} \right|dx} $$
We know that for $$\frac{1}{e} < x < 1,\,{\log _e}x < 0$$     and hence $$\frac{{{{\log }_e}x}}{x} < 0$$
and for $$1 < x < {e^2},\log \,x > 0$$     and hence $$\frac{{{{\log }_e}x}}{x} > 0$$
$$\eqalign{ & \therefore I = \int_{\frac{1}{e}}^1 {\left[ { - \frac{{{{\log }_e}\,x}}{x}} \right]dx + } \int_1^{{e^2}} {\frac{{{{\log }_e}\,x}}{x}dx} \cr & = - \frac{1}{2}\left[ {{{\left( {{{\log }_e}\,x} \right)}^2}} \right]_{\frac{1}{e}}^1 + \frac{1}{2}\left[ {{{\left( {{{\log }_e}\,x} \right)}^2}} \right]_1^{{e^2}} \cr & = \frac{1}{2} + 2 \cr & = \frac{5}{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section