Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities
Releted Question 1
If $$\tan \theta = - \frac{4}{3},$$ then $$\sin \theta $$ is
A.
$$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B.
$$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C.
$$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D.
None of these
Releted Question 2
If $$\alpha + \beta + \gamma = 2\pi ,$$ then
A.
$$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B.
$$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C.
$$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D.
None of these
Releted Question 3
Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$ then for all real values of $$\theta $$
A.
$$1 \leqslant A \leqslant 2$$
B.
$$\frac{3}{4} \leqslant A \leqslant 1$$
C.
$$\frac{13}{16} \leqslant A \leqslant 1$$
D.
$$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4
The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$ is equal to
A.
2
B.
$$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C.
4
D.
$$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$