Question

The value of $${\tan ^{ - 1}}\left( {\frac{1}{2}\left( {\tan 2A} \right) + {{\tan }^{ - 1}}\left( {\cot A} \right) + {{\tan }^{ - 1}}\left( {{{\cot }^3}A} \right)} \right)$$           is

A. $$0{\text{ if}}\,\,\frac{\pi }{4} < A < \frac{\pi }{2}$$
B. $$\pi {\text{ if}}\,\,0 < A < \frac{\pi }{4}$$
C. both $$\left( A \right){\text{ and }}\left( B \right)$$  
D. None of these
Answer :   both $$\left( A \right){\text{ and }}\left( B \right)$$
Solution :
We know that $$\cot A > 1{\text{ if }}0 < A < \frac{\pi }{4}$$
$$\eqalign{ & {\text{and }}\cot A < 1{\text{ if }}\frac{\pi }{4} < A < \frac{\pi }{2} \cr & {\tan ^{ - 1}}\left( {\cot A} \right) + {\tan ^{ - 1}}\left( {{{\cot }^3}A} \right) = \pi + {\tan ^{ - 1}}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}} \cr & {\text{If }}0 < A < \frac{\pi }{4}{\text{ and }} = {\tan ^{ - 1}}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}}{\text{ if }}\frac{\pi }{4} < A < \frac{\pi }{2} \cr & {\text{Also}},{\text{ }}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}} = \frac{{\cot A\,{\text{cose}}{{\text{c}}^2}A \cdot {{\sin }^4}A}}{{{{\sin }^4}A - {{\cot }^4}A}} \cr & = \frac{{\sin A\cos A}}{{\left( {{{\sin }^2}A + {{\cos }^2}A} \right)\left( {{{\sin }^2}A - {{\cos }^2}A} \right)}} = - \frac{{\sin 2A}}{{2\cos 2A}} = - \frac{1}{2}\tan 2A \cr} $$
Hence, $${\tan ^{ - 1}}\left( {\frac{1}{2}\tan 2A} \right) + {\tan ^{ - 1}}\left( {\cot A} \right) + {\tan ^{ - 1}}\left( {{{\cot }^3}A} \right) = \pi ,$$
\[ = \left\{ {\begin{array}{*{20}{c}} {\pi \,\,\,\,\,\,\,{\rm{ if }}\, 0 < A < \frac{\pi }{4}}\\ {0\,\,\,\,\,\,\,{\rm{ if }}\,\frac{\pi }{4} < A < \frac{\pi }{2}} \end{array}\,\,\,\,\,\left[ {{\rm{Since,}}\,{{\tan }^{ - 1}}\left( { - x} \right) = - {{\tan }^{ - 1}}x} \right]} \right.\]

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section