Question

The value of $$\sum\limits_{r = 0}^n {^n{C_r}\sin \left( {rx} \right)} $$    is equal to

A. $${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$  
B. $${2^n} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
C. $${2^{n + 1}} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
D. $${2^{n + 1}} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
Answer :   $${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
Solution :
$$\eqalign{ & \sum\limits_{r = 0}^n {^n{C_r}\sin \left( {rx} \right)} = \operatorname{Im} \left( {\sum\limits_{r = 0}^n {^n{C_r}{e^{irx}}} } \right) \cr & = \operatorname{Im} \left( {\sum\limits_{r = 0}^n {^n{C_r}{{\left( {{e^{ix}}} \right)}^r}} } \right) = \operatorname{Im} \left( {{{\left( {1 + {e^{ix}}} \right)}^n}} \right) \cr & = \operatorname{Im} {\left( {1 + \cos x + i\sin x} \right)^n} \cr & = \operatorname{Im} {\left( {2{{\cos }^2}\frac{x}{2} + 2i\sin \frac{x}{2} \cdot \cos \frac{x}{2}} \right)^n} \cr & = \operatorname{Im} {\left( {2\cos \frac{x}{2}\left( {\cos \frac{x}{2} + i\sin \frac{x}{2}} \right)} \right)^n} \cr & = {2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section