Question

The value of $$\sum\limits_{k = 1}^{10} {\left( {\sin \frac{{2k\pi }}{{11}} + i\cos \frac{{2k\pi }}{{11}}} \right)} $$     is

A. $$i$$
B. $$1$$
C. $$ - 1$$
D. $$ - i$$  
Answer :   $$ - i$$
Solution :
$$\eqalign{ & \sum\limits_{k = 1}^{10} {\left( {\sin \frac{{2k\pi }}{{11}} + i\cos \frac{{2k\pi }}{{11}}} \right)} \cr & = i\sum\limits_{k = 1}^{10} {\left( {\cos \frac{{2k\pi }}{{11}} - i\sin \frac{{2k\pi }}{{11}}} \right)} \cr & = i\sum\limits_{k = 1}^{10} {{e^{ - \frac{{2k\pi }}{{11}}i}}} \cr & = i\left\{ {\sum\limits_{k = 0}^{10} {{e^{ - \frac{{2k\pi }}{{11}}i}} - 1} } \right\} \cr & = i\left[ {1 + {e^{ - \frac{{2\pi }}{{11}}i}} + {e^{ - \frac{{4\pi }}{{11}}i}} + ..... + 11\,{\text{terms}}} \right] - i \cr & = i\left[ {\frac{{1 - {{\left( {{e^{ - \frac{{2\pi }}{{11}}}}} \right)}^{11}}}}{{1 - {e^{ - \frac{{2\pi }}{{11}}i}}}}} \right] - i \cr & = i\left[ {\frac{{1 - {e^{ - 2\pi i}}}}{{1 - {e^{ - \frac{{2\pi }}{{11}}i}}}}} \right] - i \cr & = i \times 0 - i\,\,\,\,\,\,\,\,\,\,\,\left[ {\because {e^{ - 2\pi i}} = 1} \right] = - i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section