Question

The value of $$\sin {\cot ^{ - 1}}\tan {\cos ^{ - 1}}x,{\text{ is}}$$

A. $$x$$  
B. $$\frac{1}{x}$$
C. $$1$$
D. $$0$$
Answer :   $$x$$
Solution :
$$\eqalign{ & {\text{Let, }}{\cos ^{ - 1}}x = \theta \cr & \Rightarrow x = \cos \theta {\text{ or }}\sec \theta = \frac{1}{x} \cr & \Rightarrow \tan \theta = \sqrt {{{\sec }^2}\theta - 1} = \sqrt {\frac{1}{{{x^2}}} - 1} = \frac{1}{{\left| x \right|}}\sqrt {1 - {x^2}} \cr & {\text{Now, }}\sin {\cot ^{ - 1}}\tan \theta = \sin {\cot ^{ - 1}}\left( {\frac{1}{{\left| x \right|}}\sqrt {1 - {x^2}} } \right). \cr} $$
Again, putting $$x = \sin \theta ,$$   we get
$$\eqalign{ & \sin {\cot ^{ - 1}}\left( {\frac{1}{{\left| x \right|}}\sqrt {1 - {x^2}} } \right) = \sin {\cot ^{ - 1}}\left( {\frac{{\sqrt {1 - {{\sin }^2}\theta } }}{{\sin \theta }}} \right) \cr & = \sin {\cot ^{ - 1}}\left| {\cot \theta } \right| = \sin \theta = x. \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section