Question

The value of $$\int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}{{1 + {a^x}}}dx,\,a > 0,} $$     is-

A. $$a\pi $$
B. $$\frac{\pi }{2}$$  
C. $$\frac{\pi }{a}$$
D. $$2\pi $$
Answer :   $$\frac{\pi }{2}$$
Solution :
$$\eqalign{ & {\text{Let }}I = \int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} = \int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}\left( { - x} \right)}}{{1 + {a^{ - x}}}}dx.....(1)} \cr & \left[ {{\text{Using }}\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} } } \right] \cr & = \int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}{{1 + {a^x}}}dx} .....(2) \cr} $$
Adding equations (1) and (2) we get
$$\eqalign{ & 2I = \int\limits_{ - \pi }^\pi {{{\cos }^2}x\left( {\frac{{1 + {a^x}}}{{1 + {a^x}}}} \right)dx = \int\limits_{ - \pi }^\pi {{{\cos }^2}x\,dx} } \cr & \Rightarrow 2\int\limits_0^\pi {{{\cos }^2}x\,dx} = 2 \times 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}x\,dx} = 4\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}x\,dx} \cr & \Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}x\,dx} = 2\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\,dx} \cr & \Rightarrow I = 2\int\limits_0^{\frac{\pi }{2}} {dx - } 2\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}x\,dx} \cr & \Rightarrow I + I = 2\left( {\frac{\pi }{2}} \right) = \pi \cr & \Rightarrow I = \frac{\pi }{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section