Question

The value of $$\int\limits_{\sqrt {\ell n2} }^{\sqrt {\ell n3} } {\frac{{x\,\sin \,{x^2}}}{{\sin \,{x^2} + \sin \left( {\ell n6 - {x^2}} \right)}}dx} ,$$       is-

A. $$\frac{1}{4}\ell n\frac{3}{2}$$  
B. $$\frac{1}{2}\ell n\frac{3}{2}$$
C. $$\ell n\frac{3}{2}$$
D. $$\frac{1}{6}\ell n\frac{3}{2}$$
Answer :   $$\frac{1}{4}\ell n\frac{3}{2}$$
Solution :
$$\eqalign{ & I = \frac{1}{2}\int_{\sqrt {\ell n2} }^{\sqrt {\ell n3} } {\frac{{2x\,\sin \,{x^2}}}{{\sin \,{x^2} + \sin \left( {\ell n6 - {x^2}} \right)}}dx} \cr & {\text{Let }}\,{x^2} = t\,\,\, \Rightarrow 2x\,dx = dt \cr & {\text{Also when}}\,x = \sqrt {\ell n2} ,\,\,t = \ell n2 \cr & {\text{when }}x = \sqrt {\ell n3} ,\,\,t = \ell n3 \cr & \therefore I = \frac{1}{2}\int_{\ell n2}^{\ell n3} {\frac{{\sin \,t\,dt}}{{\sin \,t + \sin \left( {\ell n6 - t} \right)\,}}.....(1)} \cr & {\text{Using }}\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \cr & {\text{We get, }}I = \frac{1}{2}\int_{\ell n2}^{\ell n3} {\frac{{\sin \,\left( {\ell n6 - t} \right)}}{{\sin \,t + \sin \left( {\ell n6 - t} \right)\,}}dt.....(2)} \cr} $$
Adding values of $$I$$ in equation (1) and (2)
$$\eqalign{ & 2I = \frac{1}{2}\int_{\ell n2}^{\ell n3} {1\,dt} = \frac{1}{2}\left( {\ell n3 - \ell n2} \right) = \frac{1}{2}\ell n\frac{3}{2} \cr & \Rightarrow I = \frac{1}{4}\ell n\frac{3}{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section