Question

The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$      is

A. $$\frac{{23}}{{25}}$$
B. $$\frac{{25}}{{23}}$$  
C. $$\frac{{23}}{{24}}$$
D. $$\frac{{24}}{{23}}$$
Answer :   $$\frac{{25}}{{23}}$$
Solution :
$$\eqalign{ & {\cot ^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right) \cr & = {\cot ^{ - 1}}\left[ {1 + n\left( {n + 1} \right)} \right] \cr & = {\tan ^{ - 1}}\left[ {\frac{{\left( {n + 1} \right) - n}}{{1 + \left( {n + 1} \right)n}}} \right] \cr & = {\tan ^{ - 1}}\left( {n + 1} \right) - {\tan ^{ - 1}}n \cr & \therefore \,\,\sum\limits_{n = 1}^{23} {\left[ {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right]} \cr & = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1 \cr & = {\tan ^{ - 1}}\frac{{23}}{{25}} \cr & \therefore \,\,\cot \left[ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} } \right] \cr & = \cot \left[ {{{\tan }^{ - 1}}\frac{{23}}{{25}}} \right] \cr & = \frac{{25}}{{23}} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section