Question

The value of $$\cos {12^ \circ } \cdot \cos {24^ \circ } \cdot \cos {36^ \circ } \cdot \cos {48^ \circ } \cdot \cos {72^ \circ } \cdot \cos {84^ \circ }$$          is

A. $$\frac{1}{{64}}$$  
B. $$\frac{1}{{32}}$$
C. $$\frac{1}{{16}}$$
D. $$\frac{1}{{128}}$$
Answer :   $$\frac{1}{{64}}$$
Solution :
Value $$ = \cos {12^ \circ } \cdot \cos {24^ \circ } \cdot \cos {48^ \circ } \cdot \cos \left( {{{180}^ \circ } - {{96}^ \circ }} \right) \cdot \cos {36^ \circ } \cdot \cos {72^ \circ }$$
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,\,\, = - \left( {\cos {{12}^ \circ } \cdot \cos {{24}^ \circ } \cdot \cos {{48}^ \circ } \cdot \cos {{96}^ \circ }} \right)\left( {\cos {{36}^ \circ } \cdot \cos {{72}^ \circ }} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\, = - \left( {\frac{{2\sin{{12}^ \circ } \cdot \cos {{12}^ \circ } \cdot \cos {{24}^ \circ } \cdot \cos {{48}^ \circ } \cdot \cos {{96}^ \circ }}}{{2\sin{{12}^ \circ }}}} \right) \times \left( {\frac{{2\sin{{36}^ \circ } \cdot \cos {{36}^ \circ } \cdot \cos {{72}^ \circ }}}{{2\sin{{36}^ \circ }}}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\, = - \frac{{\sin {{192}^ \circ }}}{{{2^4} \cdot \sin {{12}^ \circ }}} \cdot \frac{{\sin {{144}^ \circ }}}{{{2^2}\sin {{36}^ \circ }}} = \frac{1}{{{2^4}}} \cdot \frac{1}{{{2^2}}}. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section