Question

The value of $$^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} $$    is

A. $$^{55}{C_4}$$
B. $$^{55}{C_3}$$
C. $$^{56}{C_3}$$
D. $$^{56}{C_4}$$  
Answer :   $$^{56}{C_4}$$
Solution :
$$\eqalign{ & ^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} \cr & \Rightarrow \,{\,^{50}}{C_4} + \left[ {^{55}{C_3} + {\,^{54}}{C_3} + {\,^{53}}{C_3} + {\,^{52}}{C_3} + {\,^{51}}{C_3} + {\,^{50}}{C_3}} \right] \cr & {\text{We know }}\left[ {^n{C_r} + {\,^n}{C_{r - 1}} = {\,^{n + 1}}{C_r}} \right] \cr & \Rightarrow \,\,\left( {^{50}{C_4} + {\,^{50}}{C_3}} \right) + {\,^{51}}{C_3} + {\,^{52}}{C_3} + {\,^{53}}{C_3} + {\,^{54}}{C_3} + {\,^{55}}{C_3} \cr & \Rightarrow \,\,\left( {^{51}{C_4} + {\,^{51}}{C_3}} \right) + {\,^{52}}{C_3} + {\,^{53}}{C_3} + {\,^{54}}{C_3} + {\,^{55}}{C_3} \cr} $$
Proceeding in the same way, we get
$$ \Rightarrow \,{\,^{55}}{C_4} + {\,^{55}}{C_3} = {\,^{56}}{C_4}.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section