Question
The value of \[\left| {\begin{array}{*{20}{c}}
{{i^m}}&{{i^{m + 1}}}&{{i^{m + 2}}} \\
{{i^{m + 5}}}&{{i^{m + 4}}}&{{i^{m + 3}}} \\
{{i^{m + 6}}}&{{i^{m + 7}}}&{{i^{m + 8}}}
\end{array}} \right|,\] where $$i = \sqrt { - 1} ,$$ is
A.
$$1$$ if $$m$$ is a multiple of $$4$$
B.
$$0$$ for all real $$m$$
C.
$$- i$$ if $$m$$ is a multiple of $$3$$
D.
None of these
Answer :
$$0$$ for all real $$m$$
Solution :
\[\begin{array}{l}
\left| {\begin{array}{*{20}{c}}
{{i^m}}&{{i^{m + 1}}}&{{i^{m + 2}}}\\
{{i^{m + 5}}}&{{i^{m + 4}}}&{{i^{m + 3}}}\\
{{i^{m + 6}}}&{{i^{m + 7}}}&{{i^{m + 8}}}
\end{array}} \right|\\
= {i^m}{i^{m + 1}}{i^{m + 2}}\left| \begin{array}{l}
1\,\,\,\,\,\,\,1\,\,\,\,\,\,\,1\\
{i^5}\,\,\,\,{i^3}\,\,\,\,i\\
{i^6}\,\,\,\,{i^6}\,\,\,\,{i^6}
\end{array} \right|\\
= {i^{3m + 3}}{i^6}\left| \begin{array}{l}
1\,\,\,\,\,1\,\,\,\,\,1\\
{i^5}\,\,\,{i^3}\,\,\,\,i\\
1\,\,\,\,\,1\,\,\,\,\,1
\end{array} \right|\\
= 0
\end{array}\]
Hence, for all real $$m,$$ the value of given determinant is 0.