Question

The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$    is-

A. $$\frac{1}{3}$$
B. $$\frac{14}{3}$$
C. $$\frac{7}{3}$$
D. $$\frac{28}{3}$$  
Answer :   $$\frac{28}{3}$$
Solution :
$$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} = \int\limits_{ - 2}^3 {\left| {{x^2} - 1} \right|dx} $$
\[{\rm{Now }}\left| {{x^2} - 1} \right| = \left\{ \begin{array}{l} {x^2} - 1\,\,\,{\rm{if}}\,\,\,x \le - 1\\ 1 - {x^2}\,\,\,{\rm{if}}\,\,\, - 1 \le x \le 1\\ {x^2} - 1\,\,\,{\rm{if}}\,\,\,x \ge 1 \end{array} \right.\]
$$\eqalign{ & \therefore \,\,\,{\text{Integral is}} \cr & \int\limits_{ - 2}^{ - 1} {\left( {{x^2} - 1} \right)dx} + \int\limits_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int\limits_1^3 {\left( {{x^2} - 1} \right)dx} \cr & = \left[ {\frac{{{x^3}}}{3} - x} \right]_{ - 2}^{ - 1} + \left[ {x - \frac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ {\frac{{{x^3}}}{3} - x} \right]_1^3 \cr & = \left( { - \frac{1}{3} + 1} \right) - \left( { - \frac{8}{3} + 2} \right) + \left( {2 - \frac{2}{3}} \right) + \left( {\frac{{27}}{3} - 3} \right) - \left( {\frac{1}{3} - 1} \right) \cr & = \frac{2}{3} + \frac{2}{3} + \frac{4}{3} + 6 + \frac{2}{3} \cr & = \frac{{28}}{3} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section