Question

The value of $${\left( {1 + 2\omega + {\omega ^2}} \right)^{3n}} - {\left( {1 + \omega + 2{\omega ^2}} \right)^{3n}}$$       is :

A. $$0$$  
B. $$1$$
C. $${{\omega }}$$
D. $${{\omega ^2}}$$
Answer :   $$0$$
Solution :
We have,
$${\left( {1 + {\omega ^2} + 2\omega} \right)^{3n}} - {\left( {1 + \omega + 2{\omega ^2}} \right)^{3n}}$$
We know that, $$1 + \omega + {\omega ^2} = 0\,\,{\text{and}}\,\,{\omega ^3} = 1$$
∴ given expression is equal to
$$\eqalign{ & {\left( {2\omega - \omega } \right)^{3n}} - {\left( {2{\omega ^2} - {\omega ^2}} \right)^{3n}} \cr & = \,{\left( \omega \right)^{3n}} - {\left( {{\omega ^2}} \right)^{3n}} \cr & = {\left( {{\omega ^3}} \right)^n} - {\left( {{\omega ^3}} \right)^{2n}} \cr & = 1 - 1 \cr & = 0 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section