Question

The value of $$\int_0^\pi {\frac{{\sin \,nx}}{{\sin \,x}}} dx,\,n\, \in \,N,$$     is :

A. $$\pi $$ if $$n$$ is even
B. 0 if $$n$$ is odd
C. 0 if $$n$$ is even  
D. $$\pi $$ for all $$n\, \in \,N$$
Answer :   0 if $$n$$ is even
Solution :
$$\eqalign{ & I = \int_0^\pi {\frac{{\sin \,n\left( {\pi - x} \right)}}{{\sin \left( {\pi - x} \right)}}dx = \int_0^\pi {\frac{{{{\left( { - 1} \right)}^{n - 1}}\sin \,nx}}{{\sin \,x}}dx} = {{\left( { - 1} \right)}^{n - 1}}I} \cr & \therefore {\text{ if }}n\,{\text{is even, }}I = - I\,\, \Rightarrow I = 0 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section