Question

The value of $$\int_0^{\frac{\pi }{2}} {{{\sin }^8}x\,dx} $$    is :

A. $$\frac{{105\pi }}{{32\left( {4!} \right)}}$$  
B. $$\frac{{105\pi }}{{16\left( {4!} \right)}}$$
C. $$\frac{{105}}{{16\left( {4!} \right)}}$$
D. none of these
Answer :   $$\frac{{105\pi }}{{32\left( {4!} \right)}}$$
Solution :
$$\eqalign{ & {I_n} = \int_0^{\frac{\pi }{2}} {{{\sin }^n}x\,dx} \cr & = \int_0^{\frac{\pi }{2}} {{{\sin }^{n - 1}}x.\sin \,x\,dx} \cr & = \left[ {{{\sin }^{n - 1}}x.\left( { - \cos \,x} \right)} \right]_0^{\frac{\pi }{2}} - \int_0^{\frac{\pi }{2}} { - \cos \,x.\left( {n - 1} \right){{\sin }^{n - 2}}x.\cos \,x\,dx} \cr & = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {\left( {{{\sin }^{n - 2}}x - {{\sin }^n}x} \right)dx} \cr & \therefore \,\,\,n{I_n} = \left( {n - 1} \right){I_{n - 2}} \cr & \therefore \,\,\,{I_n} = \frac{{n - 1}}{n}{I_{n - 2}} \cr & \therefore \,\,\,{I_8} = \frac{7}{8}{I_6} = \frac{7}{8}.\frac{5}{6}.\frac{3}{4}.\frac{1}{2}{I_0} = \frac{{1.3.5.7}}{{1.2.3.4}}.\frac{1}{{{2^4}}}.\frac{\pi }{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section