Question

The upper $${\frac{3}{4}^{th}}$$ portion of a vertical pole subtends an angle $${\tan ^{ - 1}}\frac{3}{5}$$   at a point in the horizontal plane through its foot and at a distance $$40\,m$$  from the foot. A possible height of the vertical pole is :

A. $$80\,m$$
B. $$20\,m$$
C. $$40\,m$$  
D. $$60\,m$$
Answer :   $$40\,m$$
Solution :
3D Geometry and Vectors mcq solution image
$$\eqalign{ & \theta = \alpha + \beta ,\,\beta = {\tan ^{ - 1}}\left( {\frac{3}{5}} \right){\text{ or }}\beta = \theta - \alpha \cr & \Rightarrow \tan \,\beta = \frac{{\tan \,\theta - \tan \,\alpha }}{{1 + \tan \,\theta .\tan \,\alpha }} \cr & {\text{or }}\frac{3}{5} = \frac{{\frac{h}{{40}} - \frac{h}{{160}}}}{{1 + \frac{h}{{40}}.\frac{h}{{160}}}} \cr & \Rightarrow {h^2} - 200h + 6400 = 0 \cr & \Rightarrow h = 40{\text{ or }}160{\text{ metre}} \cr & \therefore \,{\text{possible height}} = 40\,{\text{metre}} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section