Question

The unit vector which is orthogonal to the vector $$3\hat i + 2\hat j + 6\hat k$$     and is coplanar with the vectors $$2\hat i + \hat j + \hat k$$   and $$\hat i - \hat j + \hat k$$   is :

A. $$\frac{{2\hat i - 6\hat j + \hat k}}{{\sqrt {41} }}$$
B. $$\frac{{2\hat i - 3\hat j}}{{\sqrt {13} }}$$
C. $$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$  
D. $$\frac{{4\hat i + 3\hat j - 3\hat k}}{{\sqrt {34} }}$$
Answer :   $$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
Solution :
Any vector coplanar to $${\vec a}$$ and $${\vec b}$$ can be written as
$$\eqalign{ & \vec r = \vec a + \lambda \vec b \cr & \vec r = \left( {1 + 2\lambda } \right)\hat i + \left( { - 1 + \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k \cr} $$
Since $${\vec r}$$ is orthogonal to $$5\hat i + 2\hat j + 6\hat k$$
$$\eqalign{ & \Rightarrow 5\left( {1 + 2\lambda } \right) + 2\left( { - 1 + \lambda } \right) + 6\left( {1 + \lambda } \right) = 0 \cr & \Rightarrow 9 + 18\lambda = 0 \cr & \Rightarrow \lambda = - \frac{1}{2} \cr & \therefore \,\vec r{\text{ is 3}}\hat j - \hat k \cr} $$
Since $${\hat r}$$ is a unit vector, $$\therefore \,\,\hat r = \frac{{{\text{3}}\hat j - \hat k}}{{\sqrt {10} }}$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section