Question

The two curves $${x^3} - 3x{y^2} + 2 = 0$$     and $$3{x^2}y - {y^3} = 2$$

A. cuts at right angle  
B. touch each other
C. cut at an angle $$\frac{\pi }{3}$$
D. cut at an angle $$\frac{\pi }{4}$$
Answer :   cuts at right angle
Solution :
Two curves cuts at right angle if product of their slopes is $$ –1.$$
Two given curves are
$$\eqalign{ & {x^3} - 3x{y^2} + 2 = 0......\left( {\text{i}} \right) \cr & {\text{and }}3{x^2}y - {y^3} - 2 = 0......\left( {{\text{ii}}} \right) \cr} $$
Differentiate equation $$\left( {\text{i}} \right),$$
$$\eqalign{ & 3{x^2} - 3\left[ {{y^2} + 2xy\frac{{dy}}{{dx}}} \right] = 0 \cr & \Rightarrow 3\left( {{x^2} - {y^2}} \right) = 6xy\frac{{dy}}{{dx}} \cr & \Rightarrow {m_1} = \frac{{dy}}{{dx}} = \frac{{3\left( {{x^2} - {y^2}} \right)}}{{6xy}} \cr} $$
Differentiate equation $$\left( {\text{ii}} \right),$$
$$\eqalign{ & 3{x^2}y - {y^3} - 2 = 0 \cr & \Rightarrow 3\left[ {{x^2}\frac{{dy}}{{dx}} + 2xy} \right] - 3{y^2}\frac{{dy}}{{dx}} = 0 \cr & \Rightarrow {x^2}\frac{{dy}}{{dx}} + 2xy - {y^2}\frac{{dy}}{{dx}} = 0 \cr & \Rightarrow \left( {{x^2} - {y^2}} \right)\frac{{dy}}{{dx}} = - 2xy \cr & \Rightarrow {m_2} = \frac{{dy}}{{dx}} = \frac{{ - 2xy}}{{\left( {{x^2} - {y^2}} \right)}} \cr & \therefore \,{m_1} \times {m_2} = \frac{{\left( {{x^2} - {y^2}} \right)}}{{2xy}} \times \frac{{ - 2xy}}{{\left( {{x^2} - {y^2}} \right)}} \cr & \Rightarrow {m_1} \times {m_2} = - 1 \cr} $$
i.e., curves cuts at right angle.

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section