Question

The triangle formed by the tangent to the curve $$f\left( x \right) = {x^2} + bx - b$$     at the point $$\left( {1,\,1} \right)$$  and the coordinate axes, lies in the first quadrant. If its area is $$2,$$ then the value of $$b$$ is :

A. $$ - 1$$
B. $$3$$
C. $$ - 3$$  
D. $$1$$
Answer :   $$ - 3$$
Solution :
$$f\left( x \right) = {x^2} + bx - b\,;\,f'\left( x \right) = 2x + b\, \Rightarrow f'\left( 1 \right) = b + 2$$
Equation of tangent $$y - 1 = \left( {b + 2} \right)\left( {x - 1} \right)$$
Putting $$x = 0$$
$$ \Rightarrow y = 1 - b - 2 = - b - 1 > 0 \Rightarrow b < - 1$$
Putting $$y = 0$$
$$\eqalign{ & \Rightarrow x - 1 = - \frac{1}{{b + 2}} \cr & \Rightarrow x = \frac{{ - 1}}{{b + 2}} + 1 \cr & \Rightarrow x = \frac{{b + 1}}{{b + 2}} > 0 \cr & \Rightarrow b < - 2{\text{ or }}b > - 1 \cr} $$
Combining, the two conditions $$ = b < - 2$$
$$\eqalign{ & {\text{Now, }} \cr & \frac{1}{2}\left| { - b - 1} \right|\left| {\frac{{b + 1}}{{b + 2}}} \right| = 2 \cr & \Rightarrow {\left( {b + 1} \right)^2} = 4\left| {b + 2} \right| \cr & \Rightarrow {\left( {b + 1} \right)^2} = - 4b - 8 \cr & \Rightarrow {\left( {b + 3} \right)^2} = 0 \cr & \Rightarrow b = - 3\,\,{\text{follows the condition}}\,b < - 2 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section