The tangent of the curve $$y = f\left( x \right)$$ at the point with abscissa $$x = 1$$ form an angle of $$\frac{\pi }{6}$$ and at the point $$x = 2$$ an angle of $$\frac{\pi }{3}$$ and at the point $$x = 3$$ an angle of $$\frac{\pi }{4}.$$ If $$f''\left( x \right)$$ is continuous, then the value of $$\int\limits_1^3 {f''\left( x \right)f'\left( x \right)dx} + \int\limits_2^3 {f''\left( x \right)dx} $$ is :