Question
The system of equations
$$\eqalign{
& \alpha x + y + z = \alpha - 1 \cr
& x + \alpha y + z = \alpha - 1 \cr
& x + y + \alpha z = \alpha - 1 \cr} $$
has infinite solutions, if $$\alpha $$ is
A.
$$- 2$$
B.
either $$- 2$$ or 1
C.
not $$- 2$$
D.
1
Answer :
$$- 2$$
Solution :
$$\eqalign{
& \alpha x + y + z = \alpha - 1 \cr
& x + \alpha y + z = \alpha - 1; \cr
& x + y + \alpha z = \alpha - 1 \cr} $$
\[\Delta = \left| \begin{array}{l}
\alpha \,\,\,\,\,\,1\,\,\,\,\,\,\,1\\
\,1\,\,\,\,\,\,\alpha \,\,\,\,\,\,1\\
\,1\,\,\,\,\,\,\,1\,\,\,\,\,\,\alpha
\end{array} \right|\]
$$\eqalign{
& = \alpha \left( {{\alpha ^2} - 1} \right) - 1\left( {\alpha - 1} \right) + 1\left( {1 - \alpha } \right) \cr
& = \alpha \left( {\alpha - 1} \right)\left( {\alpha + 1} \right) - 1\left( {\alpha - 1} \right) - 1\left( {\alpha - 1} \right) \cr} $$
For infinite solutions, $$\Delta = 0$$
$$\eqalign{
& \Rightarrow \,\,\left( {\alpha - 1} \right)\left[ {{\alpha ^2} + \alpha - 1 - 1} \right] = 0 \cr
& \Rightarrow \,\,\left( {\alpha - 1} \right)\left[ {{\alpha ^2} + \alpha - 2} \right] = 0 \cr
& \Rightarrow \,\,\alpha = - 2,1; \cr
& {\text{But }}\alpha \ne 1.\,\,\,\,\,\,\therefore \,\,\alpha = - 2 \cr} $$