Question

The sum to the $$n$$ term of the series $${\text{cose}}{{\text{c}}^{ - 1}}\sqrt {10} + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {50} + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {170} + ..... + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {\left( {{n^2} + 1} \right)\left( {{n^2} + 2n + 2} \right)} {\text{ is}}$$

A. $${\tan ^{ - 1}}\left( {n + 1} \right) - \frac{\pi }{4}$$  
B. $$\frac{\pi }{4}$$
C. $${\tan ^{ - 1}}\left( {n + 1} \right)$$
D. $$1$$
Answer :   $${\tan ^{ - 1}}\left( {n + 1} \right) - \frac{\pi }{4}$$
Solution :
$$\eqalign{ & {\text{Let, }}\theta = {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {\left( {{n^2} + 1} \right)\left( {{n^2} + 2n + 2} \right)} \cr & \Rightarrow {\text{cose}}{{\text{c}}^2}\theta = \left( {{n^2} + 1} \right)\left( {{n^2} + 2n + 2} \right) \cr & = {\left( {{n^2} + 1} \right)^2} + 2n\left( {{n^2} + 1} \right) + {n^2} + 1 \cr & = {\left( {{n^2} + n + 1} \right)^2} + 1 \cr & \Rightarrow {\cot ^2}\theta = {\left( {{n^2} + n + 1} \right)^2} \cr & \Rightarrow \tan \theta = \frac{1}{{{n^2} + n + 1}} = \frac{{\left( {n + 1} \right) - n}}{{1 + \left( {n + 1} \right)n}} \cr & \Rightarrow \theta = {\tan ^{ - 1}}\left[ {\frac{{\left( {n + 1} \right) - n}}{{1 + \left( {n + 1} \right)n}}} \right] = {\tan ^{ - 1}}\left( {n + 1} \right) - {\tan ^{ - 1}}n \cr} $$
Thus, sum $$n$$ terms of the given series
$$\eqalign{ & = \left( {{{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1} \right) + \left( {{{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2} \right) + \left( {{{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3} \right) + ..... + \left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right) \cr & \Rightarrow {\tan ^{ - 1}}\left( {n + 1} \right) - \frac{\pi }{4} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section