Question

The sum to $$n$$ terms of the series $$2 + 5 +14 + 41 + . . . . .\,$$     is

A. $${3^{n - 1}} + 8n - 3$$
B. $${8.3^{n}} + 4n - 8$$
C. $${3^{n + 1}} + \frac{8}{3}n + 1$$
D. None of these  
Answer :   None of these
Solution :
$$\eqalign{ & {\text{Let, }}{S_n} = 2 + 5 + 14 + 41 + ..... + {x_n} \cr & {S_n} = 2 + 5 + 14 + ..... + {x_{n - 1}} + {x_n} \cr & 0 = 2 + \left[ {3 + 9 + 27 + .....\,{\text{to}}\left( {n - 1} \right)\,{\text{terms}}} \right] - {x_n} \cr & \therefore {x_n} = 2 + \frac{{3\left( {{3^{n - 1}} - 1} \right)}}{{3 - 1}} = \frac{1}{2} + \frac{1}{2} \cdot {3^n} \cr & \therefore {S_n} = \sum {{x_n}} = \frac{1}{2}\sum 1 + \frac{1}{2}\sum {{3^n}} \cr & = \frac{n}{2} + \frac{1}{2} \cdot \frac{{3\left( {{3^{n - 1}} - 1} \right)}}{{3 - 1}} = \frac{n}{2} + \frac{3}{4}\left( {{3^n} - 1} \right) \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section