Question

The sum of the real roots of $${\cos ^6}x + {\sin ^4}x = 1$$    in the interval $$ - \pi \leqslant x \leqslant \pi $$   is equal to

A. $$0$$  
B. $$\pi $$
C. $$ - \pi $$
D. None of these
Answer :   $$0$$
Solution :
$$\eqalign{ & {\cos ^6}x = 1 - {\sin ^4}x = {\cos ^2}x\left( {1 + {{\sin }^2}x} \right) \cr & \Rightarrow \,\,{\cos ^2}x = 0\,\,\,{\text{or, }}{\cos ^4}x = 1 + {\sin ^2}x \cr & 1 + {\sin ^2}x = {\cos ^4}x \cr & \Rightarrow \,\,{\sin ^2}x = - \left( {1 - {{\cos }^4}x} \right) = - {\sin ^2}x\left( {1 + {{\cos }^2}x} \right) \cr & \Rightarrow \,\,{\sin ^2}x = 0\,\,\,{\text{or, }}2 + {\cos ^2}x = 0\left( {{\text{absurd}}} \right). \cr & \therefore \,\,\cos x = 0\,\,\,{\text{or, }}\sin x = 0 \cr & \Rightarrow \,\,x = \frac{\pi }{2}, - \frac{\pi }{2},0,\pi , - \pi . \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section