Question

The sum of all the solutions of the equation $$\cos x \cdot \cos \left( {\frac{\pi }{3} + x} \right) \cdot \cos \left( {\frac{\pi }{3} - x} \right) = \frac{1}{4},x \in \left[ {0,6\pi } \right]$$          is

A. $${15\pi }$$
B. $${30\pi }$$  
C. $${\frac{110\pi }{3}}$$
D. None of these
Answer :   $${30\pi }$$
Solution :
$$\eqalign{ & {\text{Here, }}\cos x\left( {\frac{1}{4}{{\cos }^2}x - \frac{3}{4}{{\sin }^2}x} \right) = \frac{1}{4}\,\,\,\,{\text{or, }}\frac{{\cos x}}{4}\left( {4{{\cos }^2}x - 3} \right) = \frac{1}{4} \cr & {\text{or, }}\cos 3x = 1 \cr & \Rightarrow \,\,3x = 2n\pi \cr & \Rightarrow \,\,x = \frac{{2n\pi }}{3},\,{\text{where }}n = 0,1,2,3,4,5,6,7,8,9. \cr} $$
∴ the required sum $$ = \frac{{2\pi }}{3}\sum\limits_{n = 0}^9 n .$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section