Question

The solution of the equation $$x\int_0^x {y\left( t \right)dt = \left( {x + 1} \right)\int_0^x {ty\left( t \right)dt,\,x > 0} } {\text{ is :}}$$

A. $$y = \frac{c}{{{x^3}}}{e^{{x^3}}}$$
B. $$y = c{x^3}{e^{ - {x^3}}}$$
C. $$\frac{c}{{{x^3}}}{e^{ - x}}$$
D. none of these  
Answer :   none of these
Solution :
The equation is
$$x\int_0^x {y\left( t \right)dt = \left( {x + 1} \right)} \int_0^x {ty\left( t \right)dt......\left( {\text{i}} \right)} $$
Differentiating both the sides with respect to $$x,$$ we get
$$\eqalign{ & xy\left( x \right) + \int_0^x {y\left( t \right)dt = \left( {x + 1} \right)xy\left( x \right)} + \int_0^x {ty\left( t \right)dt} \cr & \Rightarrow \int_0^x {y\left( t \right)dt = {x^2}y\left( x \right)} + \int_0^x {ty\left( t \right)dt......\left( {{\text{ii}}} \right)} \cr} $$
Differentiating again with respect to $$x,$$ we get
$$\eqalign{ & y\left( x \right) = 2xy\left( x \right) + {x^2}y'\left( x \right) + xy\left( x \right) \cr & \Rightarrow {x^2}\frac{{dy}}{{dx}} = \left( {1 - 3x} \right)y\,\,\,\,\,\,\,\,\left[ {{\text{writing }}y\left( x \right) = y} \right] \cr & \Rightarrow \frac{{dy}}{y} = \left( {\frac{{1 - 3x}}{{{x^2}}}} \right)dx \cr & \Rightarrow \frac{{dy}}{y} = \left( {\frac{1}{{{x^2}}} - \frac{3}{x}} \right)dx \cr} $$
Integrating we get, $$\log \,y = - \frac{1}{x} - 3\,\log \,x + a,\,\,\,a$$       is constant
$$\eqalign{ & \Rightarrow \log \,y + 3\,\log \,x = a - \frac{1}{x} \cr & \Rightarrow \log \left( {y{x^3}} \right) = a - \frac{1}{x} \cr & \Rightarrow y{x^3} = {e^{a - \frac{1}{x}}} \cr & \Rightarrow y{x^3} = c.{e^{ - \frac{1}{x}}}{\text{ where }}c = {e^a} \cr & \therefore \,y = \frac{c}{{{x^3}}}{e^{ - \frac{1}{x}}} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section