Question

The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{y}{x}\log \,y = \frac{y}{{{x^2}}}{\left( {\log \,y} \right)^2}$$       is :

A. $$y = \log \left( {{x^2} + cx} \right)$$
B. $$\log \,y = x\left( {c{x^2} + \frac{1}{2}} \right)$$
C. $$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$  
D. none of these
Answer :   $$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$
Solution :
Divide the equation by $$y{\left( {\log \,y} \right)^2}$$
$$\eqalign{ & \frac{1}{{y{{\left( {\log \,y} \right)}^2}}}\frac{{dy}}{{dx}} + \frac{1}{{\log \,y}}.\frac{1}{x} = \frac{1}{{{x^2}}} \cr & {\text{Put }}\frac{1}{{\log \,y}} = z \cr & \Rightarrow \frac{{ - 1}}{{y{{\left( {\log \,y} \right)}^2}}}\frac{{dy}}{{dx}} = \frac{{dz}}{{dx}} \cr & {\text{Thus, we get, }} - \frac{{dz}}{{dx}} + \frac{1}{x}.z = \frac{1}{{{x^2}}},{\text{ linear in }}z \cr & \Rightarrow \frac{{dz}}{{dx}} + \left( { - \frac{1}{x}} \right)z = - \frac{1}{{{x^2}}}\,; \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{ - \int {\frac{1}{x}dx} }} = {e^{ - \log \,x}} = \frac{1}{x} \cr & \therefore \,{\text{The solution is,}} \cr & z\left( {\frac{1}{x}} \right) = \int {\frac{{ - 1}}{{{x^2}}}} \left( {\frac{1}{x}} \right)dx + c \cr & \Rightarrow \frac{1}{{\log \,y}}\left( {\frac{1}{x}} \right) = \frac{{ - {x^{ - 2}}}}{{ - 2}} + c \cr & \Rightarrow x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section