Question

The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{x + y}}{x}$$     satisfying the condition $$y\left( 1 \right) = 1$$  is-

A. $$y = \ln \,x + x$$
B. $$y = x\ln \,x + {x^2}$$
C. $$y = x{e^{\left( {x\, - \,1} \right)}}$$
D. $$y = x\ln \,x + x$$  
Answer :   $$y = x\ln \,x + x$$
Solution :
$$\frac{{dy}}{{dx}} = \frac{{x + y}}{x} = 1 + \frac{y}{x}$$
Putting $$y=vx$$   and $$\frac{{dv}}{{dx}} = v + x\frac{{dv}}{{dx}}$$
we get
$$\eqalign{ & v + x\frac{{dv}}{{dx}} = 1 + v\,\,\, \Rightarrow \int {\frac{{dx}}{x} = \int {dv} } \cr & \Rightarrow v = \ln \,x + c\,\, \Rightarrow y = x\,\ln \,x + cx \cr & {\text{As }}y\left( 1 \right) = 1 \cr & \therefore c = 1 \cr} $$
So solution is $$y=x \ln x + x$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section