Question

The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{2yx}}{{1 + {x^2}}} = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}{\text{ is :}}$$

A. $$y\left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$  
B. $$\frac{y}{{1 + {x^2}}} = c + {\tan ^{ - 1}}x$$
C. $$y\,\log \left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
D. $$y\left( {1 + {x^2}} \right) = c + {\sin ^{ - 1}}x$$
Answer :   $$y\left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
Solution :
Given differential equation is $$\frac{{dy}}{{dx}} + \frac{{2yx}}{{1 + {x^2}}} = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}$$       which is a linear.
Differential equation of the form: $$\frac{{dy}}{{dx}} + Py = Q$$
On comparing, we have
$$\eqalign{ & P = \frac{{2x}}{{1 + {x^2}}}{\text{ and }}Q = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{{2x}}{{1 + {x^2}}}dx} }} = {e^{\log \left( {1 + {x^2}} \right)}} = \left( {1 + {x^2}} \right) \cr} $$
$$\therefore $$  Solution is
$$\eqalign{ & y\left( {1 + {x^2}} \right) = \int {\frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}} \left( {1 + {x^2}} \right)dx + c \cr & \Rightarrow y\left( {1 + {x^2}} \right) = \int {\frac{1}{{\left( {1 + {x^2}} \right)}}} dx + c \cr & \Rightarrow y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x + c \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section