Question

The solution of the differential equation $$\left\{ {1 + x\sqrt {\left( {{x^2} + {y^2}} \right)} } \right\}dx + \left\{ {\sqrt {\left( {{x^2} + {y^2}} \right)} - 1} \right\}y\,dy = 0{\text{ is :}}$$

A. $${x^2} + \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$
B. $$x - \frac{{{y^2}}}{3} + \frac{1}{2}{\left( {{x^2} + {y^2}} \right)^{\frac{1}{2}}} = C$$
C. $$x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$  
D. none of these
Answer :   $$x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$
Solution :
Rearranging the equation, we have
$$\eqalign{ & dx - y\,dy + \sqrt {\left( {{x^2} + {y^2}} \right)} \left( {x\,dx + y\,dy} \right) = 0 \cr & \Rightarrow dx - y\,dy + \frac{1}{2}\sqrt {\left( {{x^2} + {y^2}} \right)} d\left( {{x^2} + {y^2}} \right) = 0 \cr} $$
On integrating, we get
$$\eqalign{ & x - \frac{{{y^2}}}{2} + \frac{1}{2}\int {\sqrt t \,dt = c,\,\left\{ {t = \sqrt {\left( {{x^2} + {y^2}} \right)} } \right\}} \cr & {\text{or }}x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section