Question

The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xydx$$     is $$y = y\left( x \right).$$   If $$y\left( 1 \right) = 1$$   and $$\left( {{x_0}} \right) = e,$$   then $${{x_0}}$$ is equal to-

A. $$\sqrt {2\left( {{e^2} - 1} \right)} $$
B. $$\sqrt {2\left( {{e^2} + 1} \right)} $$
C. $$\sqrt 3 \,e$$  
D. $$\sqrt {\frac{{{e^2} + 1}}{2}} $$
Answer :   $$\sqrt 3 \,e$$
Solution :
The given D.E. is $$\left( {{x^2} + {y^2}} \right)dy = xy\,dx\,\,\,{\text{s}}{\text{.t}}{\text{.}}\,\,y\left( 1 \right) = 1$$       and $$y\left( {{x_0}} \right) = e$$
The given equation can be written as
$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{xy}}{{{x^2} + {y^2}}} \cr & {\text{Put }}y = vx, \cr & \therefore v + x\frac{{dv}}{{dx}} = \frac{v}{{1 + {v^2}}} \cr & \Rightarrow x\frac{{dv}}{{dx}} = \frac{{ - {v^3}}}{{1 + {v^2}}} \cr & \Rightarrow \int {\frac{{1 + {v^2}}}{{{v^3}}}dv + \int {\frac{{dx}}{x} = 0} } \cr & \Rightarrow - \frac{1}{{2{v^2}}} + \log \left| v \right| + \log \left| x \right| = C \cr & \Rightarrow \log \,y = C + \frac{{{x^2}}}{{2{y^2}}}\,\,\,\,\,\,\,\left( {{\text{using }}v = \frac{y}{x}} \right) \cr & {\text{Also, }}y\left( 1 \right) = 1 \Rightarrow \log 1 = C + \frac{1}{2} \Rightarrow C = - \frac{1}{2} \cr & \therefore \,\log \,y = \frac{{{x^2} - {y^2}}}{{2{y^2}}},\,\,\,\,\,\,\,\,{\text{But given }}y\left( {{x_0}} \right) = e \cr & \Rightarrow \log \,e = \frac{{x_0^2 - {e^2}}}{{2{e^2}}}\,\,\,\, \Rightarrow x_0^2 = 3{e^2}\,\,\,\, \Rightarrow {x_0} = \sqrt 3 \,e \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section