Question

The solution of $$2\sqrt 2 \,{x^4} = \left( {\sqrt 3 - 1} \right) + i\left( {\sqrt 3 + 1} \right)$$       is

A. $$ \pm \left( {\cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}} \right)$$  
B. $$ \pm \left( {\cos \frac{{7\pi }}{{48}} + i\sin \frac{{7\pi }}{{48}}} \right)$$
C. $$ \pm \left( {\cos \frac{{19\pi }}{{48}} - i\sin \frac{{19\pi }}{{48}}} \right)$$
D. None of these
Answer :   $$ \pm \left( {\cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}} \right)$$
Solution :
$$\eqalign{ & {x^4} = \frac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \frac{{5\pi }}{{12}} + i\sin \frac{{5\pi }}{{12}} \cr & {\text{So, }}x = \cos \left\{ {\frac{{k\pi }}{2} + \frac{{5\pi }}{{48}}} \right\} + i\sin \left\{ {\frac{{k\pi }}{2} + \frac{{5\pi }}{{48}}} \right\} \cr & k = 0,1,2,3 \cr & \therefore {\text{Roots are}} \cr & \cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}{\text{ for }}k = 0 \cr & \cos \frac{{29\pi }}{{48}} + i\sin \frac{{29\pi }}{{48}}{\text{ for }}k = 1 \cr & \cos \frac{{53\pi }}{{48}} + i\sin \frac{{53\pi }}{{48}} = - \left( {\cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}} \right){\text{ for }}k = 2 \cr & \cos \frac{{77\pi }}{{48}} + i\sin \frac{{77\pi }}{{48}} = - \left( {\cos \frac{{29\pi }}{{48}} + i\sin \frac{{29\pi }}{{48}}} \right){\text{ for }}k = 3 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section