Question

The slope of the tangent to a curve $$y = f\left( x \right)$$   at $$\left( {x,\,f\left( x \right)} \right)$$   is $$2x + 1.$$   If the curve passes through the point $$\left( {1,\,2} \right),$$  then the area of the region bounded by the curve, the $$x$$-axis and the line $$x = 1$$  is :

A. $$\frac{5}{6}{\text{ sq}}{\text{. unit}}$$  
B. $$\frac{6}{5}{\text{ sq}}{\text{. unit}}$$
C. $$\frac{1}{6}{\text{ sq}}{\text{. unit}}$$
D. $$6{\text{ sq}}{\text{. unit}}$$
Answer :   $$\frac{5}{6}{\text{ sq}}{\text{. unit}}$$
Solution :
We, given $$\frac{{dy}}{{dx}} = 2x + 1 \Rightarrow y = {x^2} + x + k$$
Application of Integration mcq solution image
Since, the curve passes through the point $$\left( {1,\,2} \right)$$
$$\eqalign{ & \therefore \,2 = 1 + 1 + k \Rightarrow k = 0 \cr & \therefore \,{\text{The curve is }}y = {x^2} + x \cr} $$
So, the required area
$$\eqalign{ & = \int_0^1 {\left( {{x^2} + x} \right)dx} \cr & = \left[ {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right]_0^1 \cr & = \frac{1}{3} + \frac{1}{2} \cr & = \frac{5}{6}{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section