Question

The slope of the diameter of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,$$   whose length is the GM of the major and minor axes, is :

A. $$\sqrt {\frac{a}{b}} $$
B. $$\sqrt {ab} $$
C. $$\sqrt {\frac{b}{a}} $$  
D. $$\frac{a}{b}$$
Answer :   $$\sqrt {\frac{b}{a}} $$
Solution :
The length of the diameter $$ = \sqrt {2a.2b} = 2\sqrt {ab} $$
Let $$P\left( {a\cos \phi ,\,b\sin \,\phi } \right)$$    be one end of the diameter.
Then $$2\left\{ {{{\left( {a\cos \phi - 0} \right)}^2} + {{\left( {b\sin \,\phi - 0} \right)}^2}} \right\} = 2\sqrt {ab} $$
or $${a^2}{\cos ^2}\phi + {b^2}{\sin ^2}\phi = ab$$
The slope of the diameter $$ = \frac{{b\sin \,\phi - 0}}{{a\cos \,\phi - 0}} = \frac{b}{a}\tan \,\phi $$
Now, $${a^2} + {b^2}{\tan ^2}\phi = ab{\sec ^2}\phi = ab\left( {1 + {{\tan }^2}\phi } \right)$$
$$\eqalign{ & \therefore \,\,\,{\tan ^2}\phi = \frac{{ab - {a^2}}}{{{b^2} - ab}} = \frac{{a\left( {b - a} \right)}}{{b\left( {b - a} \right)}} = \frac{a}{b} \cr & \Rightarrow \frac{{{b^2}}}{{{a^2}}}{\tan ^2}\phi = \frac{b}{a} \cr & \therefore \,\,{\left( {{\text{slope}}} \right)^2} = \frac{b}{a} \cr} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section