Question

The shortest distance between the skew lines $${l_1}:\overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow {{b_1}} ,\,{l_2}:\overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow {{b_2}} {\text{ is :}}$$

A. $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$  
B. $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{a_2}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
C. $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{b_2}} } \right).\overrightarrow {{a_1}} \times \overrightarrow {{b_1}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
D. $$\frac{{\left| {\left( {\overrightarrow {{a_1}} - \overrightarrow {{b_2}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{a_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{a_2}} } \right|}}$$
Answer :   $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
Solution :
Let $$PQ$$  be the shortest distance vector between $${l_1}$$ and $${l_2}.$$
Now, $${l_1}$$ passes through $${A_1}\left( {\overrightarrow {{a_1}} } \right)$$  and is parallel to $${\overrightarrow {{b_1}} }$$ and $${l_2}$$ passes through $${A_2}\left( {\overrightarrow {{a_2}} } \right)$$  and is parallel to $${\overrightarrow {{b_2}} }.$$
Since, $$PQ$$  is perpendicular to both $${l_1}$$ and $${l_2}$$ it is parallel to $$\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} .$$
Three Dimensional Geometry mcq solution image
Let $${\hat n}$$ be the unit vector along $$PQ.$$
Then, $$\hat n = \frac{{\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
Let $$d$$ be the shortest distance between the given lines $${l_1}$$ and $${l_2}.$$
$$\overrightarrow {\left| {PQ} \right|} = d$$   and $$\overrightarrow {\left| {PQ} \right|} = d\,\hat n$$
Next $$PQ$$  being the line of shortest distance between $${l_1}$$ and $${l_2}$$ is the projection of the line joining the points $${A_1}\left( {\overrightarrow {{a_1}} } \right)$$  and $${A_2}\left( {\overrightarrow {{a_2}} } \right)$$  on $${\hat n}$$ ;
$$\left| {\overrightarrow {PQ} } \right| = \left| {\overrightarrow {{A_1}} \overrightarrow {{A_2}} .\hat n} \right| \Rightarrow d = \frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section