Question

The shortest distance between the lines $$x - y = 0 = 2x + z$$     and $$x + y - 2 = 0 = 3x - y + z - 1$$       is :

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{{2\sqrt 3 }}$$  
C. $$\frac{1}{2}$$
D. $$1$$
Answer :   $$\frac{1}{{2\sqrt 3 }}$$
Solution :
3D Geometry and Vectors mcq solution image
Equations of the lines in symmetric form are $$\frac{x}{1} = \frac{y}{1} = \frac{z}{{ - 2}}{\text{ and }}\frac{{x - \frac{3}{4}}}{1} = \frac{{y - \frac{5}{4}}}{{ - 1}} = \frac{z}{{ - 4}}$$
$$\eqalign{ & {\text{Now,}}\,\,l + m - 2n = 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,l - m - 4n = 0 \cr & {\text{Solving, }}\frac{l}{{ - 2}} = \frac{m}{2} = \frac{n}{{ - 2}}\,\,\,\,\,\, \Rightarrow l = \frac{{ - 1}}{{\sqrt 3 }},\,m = \frac{1}{{\sqrt 3 }},\,n = \frac{{ - 1}}{{\sqrt 3 }} \cr} $$
$$\therefore $$  shortest distance $$ = \left( {\frac{3}{4} - 0} \right)\frac{{ - 1}}{{\sqrt 3 }} + \left( {\frac{5}{4} - 0} \right)\frac{1}{{\sqrt 3 }} + \left( {0 - 0} \right)\frac{{ - 1}}{{\sqrt 3 }}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section