Question
The shortest distance between the line $$y-x=1$$ and the curve $$x = {y^2}$$ is:
A.
$$\frac{{2\sqrt 3 }}{8}$$
B.
$$\frac{{3\sqrt 2 }}{5}$$
C.
$$\frac{{\sqrt 3 }}{4}$$
D.
$$\frac{{3\sqrt 2 }}{8}$$
Answer :
$$\frac{{3\sqrt 2 }}{8}$$
Solution :
Let $$\left( {{a^2},\,a} \right)$$ be the point of shortest distance on $$x = {y^2}.$$ Then distance between $$\left( {{a^2},\,a} \right)$$ and line $$x-y+1=0$$ is given by
$$D = \frac{{{a^2} - a + 1}}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\left[ {{{\left( {a - \frac{1}{2}} \right)}^2} + \frac{3}{4}} \right]$$
It is minimum when $$a = \frac{1}{2}$$ and $${D_{\min .}} = \frac{3}{{4\sqrt 2 }} = \frac{{3\sqrt 2 }}{8}$$