Question

The remainder left out when $${8^{2n}} - {\left( {62} \right)^{2n + 1}}$$   is divided by 9 is:

A. 2  
B. 7
C. 8
D. 0
Answer :   2
Solution :
$$\eqalign{ & {8^{2n}} - {\left( {62} \right)^{2n + 1}} \cr & = {\left( {64} \right)^n} - {\left( {62} \right)^{2n + 1}} = {\left( {63 + 1} \right)^n} - {\left( {63 - 1} \right)^{2n + 1}} \cr & = \left[ {^n{C_0}{{\left( {63} \right)}^n} + {\,^n}{C_1}{{\left( {63} \right)}^{n - 1}} + {\,^n}{C_2}{{\left( {63} \right)}^{n - 2}} + ..... + {\,^n}{C_{n - 1}}\left( {63} \right) + {\,^n}{C_n}} \right] \cr & = \left[ {^{2n + 1}{C_0}{{\left( {63} \right)}^{2n + 1}} - {\,^{2n + 1}}{C_1}{{\left( {63} \right)}^{2n}} + {\,^{2n + 1}}{C_2}{{\left( {63} \right)}^{2n - 1}} - ..... + \,{{\left( { - 1} \right)}^{2n + 1}}{\,^{2n + 1}}{C_{2 + 1}}} \right] \cr & = 63 \times \left[ {^n{C_0}{{\left( {63} \right)}^{n - 1}} + {\,^n}{C_1}{{\left( {63} \right)}^{n - 2}} + {\,^n}{C_2}{{\left( {63} \right)}^{n - 3}} + .....} \right] + 1 - 63 \times \left[ {^{2n + 1}{C_0}{{\left( {63} \right)}^{2n}} - {\,^{2n + 1}}{C_1}{{\left( {63} \right)}^{2n - 1}} + .....} \right] + 1 \cr & \Rightarrow \,\,63 \times {\text{some integral value}} + 2 \cr} $$
$$ \Rightarrow \,\,{8^{2n}} - {\left( {62} \right)^{2n + 1}}$$    when divided by 9 leaves 2 as the remainder.

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section