Question

The relation ‘‘ congruence modulo $$m$$ ’’ is :

A. reflexive only
B. transitive only
C. symmetric only
D. an equivalence relation  
Answer :   an equivalence relation
Solution :
If $$R$$ be the relation, $$x\,R\,y \Leftrightarrow x - y$$   is divisible by $$m.$$
$$x\,R\,x$$   because $$x-x$$   is divisible by $$m.$$  So, $$R$$ is reflexive.
$$x\,R\,y \Rightarrow y\,R\,x.$$    So, $$R$$ is symmetric.
$$x\,R\,y$$   and $$y\,R\,z \Rightarrow x - y = {k_1}m,\,\,y - z = {k_2}m$$
$$\therefore x - z = \left( {{k_1} + {k_2}} \right)m.$$     So, $$R$$ is transitive.
As $$R$$ is reflexive, symmetric and transitive, it is an equivalence relation.

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section