Question

The range of the real-valued function $$f\left( x \right) = \sqrt {9 - {x^2}} $$    is :

A. $$\left[ {0,\,3} \right]$$  
B. $$\left[ { - 3,\,3} \right]$$
C. $$\left[ { - 3,\,0} \right]$$
D. none of these
Answer :   $$\left[ {0,\,3} \right]$$
Solution :
$$9 - {x^2} \geqslant 0\,\,\, \Rightarrow - 3 \leqslant x \leqslant 3$$
As $$9 - {x^2}$$   is an even function, the value of $$f\left( x \right)$$  changes in $$0 \leqslant x \leqslant 3$$
Therefore,
$$\max \,f\left( x \right) = \sqrt {9 - 0} = 3{\text{ and }}\min \,f\left( x \right) = \sqrt {9 - 9} = 0$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section