Question

The radius of a circle, having minimum area, which touches the curve $$y = 4 - {x^2}$$  and the lines, $$y = \left| x \right|$$  is :

A. $$4\left( {\sqrt 2 + 1} \right)$$
B. $$2\left( {\sqrt 2 + 1} \right)$$
C. $$2\left( {\sqrt 2 - 1} \right)$$
D. none of these  
Answer :   none of these
Solution :
Let the equation of circle be
$${x^2} + {\left( {y - k} \right)^2} = {r^2}$$
It touches $$x-y=0$$
Parabola mcq solution image
$$\eqalign{ & \Rightarrow \left| {\frac{{0 - k}}{{\sqrt 2 }}} \right| = r \cr & \Rightarrow k = r\sqrt 2 \cr} $$
$$\therefore $$ Equation of circle becomes
$${x^2} + {\left( {y - k} \right)^2} = \frac{{{k^2}}}{2}.....({\text{i}})$$
It touches $$y = 4 - {x^2}$$   as well
$$\therefore $$ Solving the two equations
$$\eqalign{ & \Rightarrow 4 - y + {\left( {y - k} \right)^2} = \frac{{{k^2}}}{2} \cr & \Rightarrow {y^2} - y\left( {2k + 1} \right) + \frac{{{k^2}}}{2} + 4 = 0 \cr} $$
It will give equal roots $$\therefore $$ $$D=0$$
$$\eqalign{ & \Rightarrow {\left( {2k + 1} \right)^2} = 4\left( {\frac{{{k^2}}}{2} + 4} \right) \cr & \Rightarrow 2{k^2} + 4k - 15 = 0 \cr & \Rightarrow k = \frac{{ - 2 + \sqrt {34} }}{2} \cr & \therefore r = \frac{k}{{\sqrt 2 }} = \frac{{ - 2 + \sqrt {34} }}{{2\sqrt 2 }} \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section